

Role of Gold and Silver Nanoparticles in Antiviral Therapy for HIV Hepatitis and Emerging Infections

H. Faritha Begam, Angesh Chandra
SEETHALAKSHMI ACHI COLLEGE FOR WOMEN,
GOVERNMENT NAVEEN COLLEGE.

Role of Gold and Silver Nanoparticles in Antiviral Therapy for HIV Hepatitis and Emerging Infections

¹H. Faritha Begam, Assistant Professor of Zoology, Seethalakshmi Achi College for Women, Pallathur, Sivagangai, 630 107, Tamilnadu India. fariafsheen@gmail.com

²Angesh Chandra, Assistant Professor, Department of Physics, Government Naveen College, Saragaon, Janjgir Champa, Chhattisgarh - 495686, India. chandrassi@gmail.com

Abstract

The integration of gold and silver nanoparticles (AuNPs and AgNPs) into antiviral therapy has emerged as a groundbreaking approach for addressing persistent challenges in the treatment of viral infections, including HIV, hepatitis, and emerging pathogens. These nanoparticles exhibit unique physicochemical properties, such as their size, shape, and surface functionality, which enable them to interact with viral particles, inhibit replication, and enhance the delivery of antiviral agents. This chapter explores the molecular mechanisms underlying the antiviral effects of gold and silver nanoparticles, including their ability to disrupt viral entry, protein synthesis, and genome replication, while also modulating immune responses. The potential for functionalizing these nanoparticles with targeting ligands further improves their therapeutic specificity, providing precise delivery systems for antiviral drugs. In addition, the application of machine learning models and computational simulations offers new insights into nanoparticle-virus interactions, facilitating the rational design of nanoparticles with optimized therapeutic properties. Despite the promising results, challenges such as stability, biodistribution, and toxicity remain, necessitating further research to fully translate these technologies into clinical applications. This chapter outlines the current state of research, highlights key advancements in nanoparticle-based antiviral therapies, and discusses the future directions of this emerging field.

Keywords: gold nanoparticles, silver nanoparticles, antiviral therapy, drug delivery, nanoparticle functionalization, machine learning

Introduction

Gold and silver nanoparticles (AuNPs and AgNPs) have garnered significant attention in recent years for their potential applications in antiviral therapies [1]. Their distinctive properties, such as small size, large surface area, and the ability to functionalize with various biomolecules, make them highly effective in interacting with viral particles [2]. As the world faces an ever-growing number of viral outbreaks and the limitations of conventional antiviral drugs, these nanoparticles offer an innovative and versatile platform for developing new therapeutic strategies [3]. This chapter explores the promising role of AuNPs and AgNPs in combating viral infections [4], specifically focusing on their mechanisms of action, advantages, and challenges [5].

The antiviral mechanisms of gold and silver nanoparticles are complex and multifaceted [6]. Both AuNPs and AgNPs have been shown to interfere with various stages of the viral life cycle, from viral attachment and entry into host cells to the replication and synthesis of viral proteins [7]. These nanoparticles can physically interact with viral membranes, disrupting their integrity and inhibiting the entry of viral particles into host cells [8]. Furthermore, nanoparticles can influence viral protein synthesis and genome replication, making them an effective means of controlling viral propagation [9]. Understanding the molecular interactions between nanoparticles and viruses is crucial for optimizing their design and improving therapeutic efficacy [10].

A significant advantage of gold and silver nanoparticles in antiviral therapy is their ability to be functionalized with targeting ligands, such as antibodies, peptides, or nucleic acids [11]. This functionalization allows for the specific targeting of infected cells or tissues, improving the selectivity and effectiveness of treatment [12]. By attaching antiviral drugs or molecules to the surface of nanoparticles, the therapeutic payload can be delivered directly to the site of infection, reducing systemic toxicity and improving the overall therapeutic index [13]. This targeted delivery approach is particularly important in the treatment of chronic viral infections like HIV and hepatitis [14], where precision and sustained therapeutic effects are essential [15].